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Abstract

This paper presents a unified algorithm for studying the eigenvalue problem of a lined duct using the homotopy method.

Results from various validations show that the method developed in this work can provide accurate and reliable numerical

solutions for sound-propagation computation. The investigation also indicates that homotopy methods not only overcome

the computational difficulties of the existing methods for locally reacting liners, but also give a completely different way to

calculate the eigenvalues of non-locally reacting liners, which have recently received considerable attention due to their

potential application for future advanced liners. Finally, a model multi-segmented, non-locally reacting liner is employed

to study the possibility of controlling sound attenuation through a bias flow. The simulation shows that by adjusting the

bias flow of each segment, optimal sound attenuation can theoretically be achieved.

r 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Acoustic liners are used extensively to suppress sound propagation in ducts. The design of these liners to
achieve the most efficient attenuation has been a major subject of expert concern. For this reason, various
methods for predicting the attenuation of acoustic waves in a lined duct have been developed over the last
several decades. One of these methods is based on solving the eigenvalue equation in order to compute the
radial wavenumbers for each duct propagation mode. The solution of eigenvalues is hence critical for this
method to work robustly and efficiently. The primary objective of the present work is to make use of
homotopy methods to form a unified algorithm, so as to study the eigenvalue problem appearing in both
locally and non-locally reacting liners and also achieve insight into the mechanism of the interaction of sound
propagation with various sound-absorption structures.

Locally reacting liners that permit propagation only in the direction normal to the duct wall usually consist
of a perforated sheet or thin layer of porous material followed by a honeycomb array and backed by the
impervious wall of the duct. In general, we can describe the wall-boundary condition with the help of
the concept of acoustic impedance without directly considering the sound propagation inside the liners.

ARTICLE IN PRESS

www.elsevier.com/locate/jsvi

0022-460X/$ - see front matter r 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jsv.2007.01.020

�Corresponding author: Tel./fax: +86 10 82317408.

E-mail address: sunxf@buaa.edu.cn (X. Sun).



The eigenvalue equation derived from the impedance condition is usually solved by Eversman’s integration
method [1,2], in which a nonlinear ordinary differential equation (ODE) is derived by introducing a parameter
perturbation to the transcendental algebraic equation. The solution of eigenvalues is thus changed into an
initial-valued problem. With this method, one can obtain the eigenvalues by numerically solving the ODE with
the hard wall eigenvalues as the initial condition of the soft wall. This method has had a great influence on the
study of sound propagation in ducts with locally reacting liners, especially in the acoustic design of aircraft
nacelles. There is singularity, however, at the lowest-order mode, the plane wave, in the ODE derived by
Eversman’s method for both rectangular and circular ducts [3]. Furthermore, some investigations have also
shown that there are numerical instabilities or mode jump phenomena under some impedance boundary
conditions. The problem has received little attention in recent years, although it remains insufficiently
understood. It is noted, however, that the calculation of the eigenvalues still plays an important role in the
preliminary stage of duct acoustic design in many fields related to practical engineering applications.
Overcoming the singularity problem apparent in the existing method by developing a new approach is also a
problem of academic interest. Non-locally reacting liners, also known as bulk-reacting liners, permit
propagation in more than one direction. Their applicability to a relatively wide frequency range and ability to
control sound attenuation has received considerable attention in both experimental and theoretical
investigations [4–10]. Especially for the calculation of the eigenvalues of non-locally reacting liners, most of
the work is based on the Newton–Raphson scheme. Common problems are the selection of initial values and
the convergence of the algorithm. Once again, a method for accurately and effectively solving the eigenvalues
still deserves to be further investigated for both locally and non-locally reacting liners.

The homotopy method may effectively resolve the problem of computing eigenvalues. The method, as first
proposed by Scarf [11] and further developed by Eaves and Scarf [12], offers a powerful means of determining
solutions to complex systems of equations [13]. In this paper, we will use the basic concept of the homotopy
method to constitute various homotopy equations to calculate the eigenvalues for both locally and non-locally
reacting liners. In this framework, the homotopy equation we suggest has no singularity for the lowest mode,
i.e., the plane wave mode, and one can flexibly choose homotopy parameters to avoid numerical instability or
mode jump problems. In particular, for a non-locally reacting liner, the effect of the liner cannot be described
by effective impedance, since acoustic waves in the liner also propagate parallel to the wall. Because of this, it
is invalid to directly extend Eversman’s method to the non-locally reacting liners. However, with the
application of the homotopy concept, it is possible to constitute the homotopy equation for the non-locally
reacting liners. It can then be changed into a nonlinear ODE and then solved as an initial problem of the ODE.
We present various numerical results for both porous liners and perforated liners, with an emphasis on
comparison with existing results. In particular, we compare our numerical results with the recent experimental
data by Eldredge and Dowling [10], and show very good agreement. Finally, this work shows that it is
convenient to extend the present model to include the effect of multi-segmented non-locally reacting liners,
and is suitable for optimizing computation by making use of the existing transfer matrix or mode-matching
method presented by Zorumski [14]. Our numerical simulation for multi-segmented liners shows the capability
to control the sound attenuation with bias flow.

In the following sections, we will first make a brief introduction to the homotopy methods related to our
research and then introduce various numerical results by constituting different homotopy equations for both
locally and non-locally reacting liners. In the last part, we will suggest a model for studying multi-segmented
non-locally reacting liners and then give the relevant numerical results and analysis.

2. Homotopy methods

Homotopy, or continuation, methods are globally convergent numerical techniques for solving nonlinear
algebraic equations. They have been used extensively for various practical applications [13], such as trajectory
generation and DC operating point problems. As mentioned in the introduction, we extend this method to
the eigenvalue problem in duct acoustics, which has not been done previously. For this specific objective,
it is necessary to make a brief description of homotopy methods, with an emphasis on the relevant
homotopy formulation in connection with our eigenvalue algorithm. Suppose that we wish to find a solution
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x 2 D � Rn to

F ðxÞ ¼ 0 (1)

which we know to exist, where F : Rn ! Rn is a smooth mapping, and D is compact. Without a good
approximation of the zero point x, an iterative solution to Eq. (1) will often fail, because poor starting values
are likely to be chosen. As a possible remedy, we might first solve an easier system, also having a solution in D

GðxÞ ¼ 0, (2)

where G : Rn ! Rn. From these, we can construct the linear homotopy

Hðx; tÞ ¼ tF ðxÞ þ ð1� tÞGðxÞ, (3)

where H : Rnþ1! Rn. For t ¼ 0, F ðx; 0Þ ¼ GðxÞ ¼ 0 is a vector system with known solutions, whereas for
t ¼ 1, Hðx; 1Þ ¼ F ðxÞ ¼ 0 yields the solution of the original problems. The parameter t is called the homotopy
parameter. If the functions t! xðtÞ and G are differentiable, then differentiating Eq. (3) with respect to t gives

qH

qx

qx

qt
þ

qH

qt
¼ 0; xð0Þ ¼ a; 0oto1, (4)

which is a system of differential equations with the initial condition xð0Þ. More importantly, this actually
shows that the solution of the algebraic equation presented in Eq. (3) can be transformed into an initial value
problem of ordinary equations in the form of

qx

qt
¼ �

qH=qt

qH=qx
. (5)

It should be noted that, for different GðxÞ, there will be different integration paths in solving the differential
equation (5). However, it can be verified that these paths will never have bifurcations and will never be infinite
in length. Thus, in principle, they can be followed from one end to another, or, in the case of loops, from an
arbitrary starting point back to the same point [13].

3. Homotopy solution of the eigenvalue problem for a locally reacting liner

The propagation of sound in a duct with uniform flow is governed by the convected wave equation

r2p�
1

c20

D2
0p

Dt2
¼ 0, (6a)

where D0=Dt ¼ ðq=qtÞ þ u0ðq=qzÞ and u0 is the mean flow velocity in the axial direction, r2 is the Laplacian
operator and p is the acoustic pressure. To determine the sound attenuation in the lined duct shown in Fig. 1,
the separation of variables can be applied to solve the equation. Furthermore, the application of the
displacement continuity condition and momentum equation [1], gives

F ðgÞ ¼ g tanðkb � gÞ � ib0w
2 ¼ 0, (6b)

where g ¼ kr=k, and

w ¼
1�Ma½1� ð1�Ma2Þg2�1=2

1�Ma2
, (6c)
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Fig. 1. The geometry of an acoustically locally reacting liner two-dimensional duct.
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kz=k ¼ ð�Ma�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ð1�Ma2Þg2
q

Þ=ð1�Ma2Þ, (6d)

and b0 is the specific admittance ratio, k is wavenumber, Ma is the Mach number of the mean flow in the duct.
Besides, z is the duct axial coordinate and r is the transverse coordinate measured from the hard wall. krn

is the
transverse wavenumber for the nth mode of propagation and kzn

is the corresponding axial wavenumber.
In terms of the basic form of linear homotopy shown in Eq. (3), the two different forms of the homotopy

equation can be constructed into

Hðg; tÞ ¼ ð1� tÞ tanðkb � gÞ þ tF ðgÞ ¼ 0, (7a)

Hðg; tÞ ¼ ð1� tÞðg� g0Þ þ tF ðgÞ ¼ 0, (7b)

where g0 is the eigenvalue of hard wall. In Eq. (7a), GðxÞ ¼ tanðkb � g0Þ, while in Eq. (7b), GðxÞ ¼ ðg� g0Þ, g0 is
the starting value at t ¼ 0. As introduced in Eq. (5), the relevant differential equations can be arrived at

dg
dt
¼ �

� tanðkb � gÞ þ F ðgÞ
ð1� tÞkb sec2ðkb � gÞ þ tðqF=qgÞ

, (8a)

dg
dt
¼ �

�ðg� g0Þ þ F ðgÞ
ð1� tÞ þ tðqF=qgÞ

. (8b)

As we mentioned in Section 2, different GðxÞ can be used to form different homotopy equations. Obviously,
Eqs. (8a) and (8b) are both nonlinear differential equations with the same initial value. Thus, the solution of
the algebraic equation shown in Eqs. (7a) and (7b) has been transformed into an initial value problem of ODE.
Naturally, various tools for the solution of ODE can be used to calculate the eigenvalue. On the other hand, it
is noted that Eversman [1,2] derived the following ordinary equation by assuming that the eigenvalues are a
function of some parameter, t and letting the admittance b0ðtÞ ¼ tb0f vary from 0ptp1

dg
dt
¼

iw2b0f

tanðkb � gÞ þ kb � g sec2ðkb � gÞ � 2ib0ðtÞwMag=v1=2
, (8c)

where v ¼ 1� ð1�Ma2Þðkz=kÞ2. It is noted that for the case of plane wave, Eq. (8c) will become singular, since
the starting value g ¼ 0. Eversman proposed to use small b0 and g for the first step of integration to avoid this
problem. In addition, if we use Eqs. (8a) and (8b), there is no singularity for any starting values, and naturally
it is more convenient to obtain more accurate results by numerically integrating the related ordinary
equations. Table 1 shows an excellent comparison of the results from Eqs. (8a) and (8b) and those from
Ref. [2]. As we have mentioned previously, using different homotopy equations will result in different
integration paths, but the homotopy method guarantees that these paths will finally return to the same point.
Fig. 2 shows such results using different homotopy equations.
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Table 1

Comparison of results for ðkr=kÞ in a lined two-dimensional duct with uniform flow, Ma ¼ 0:5; kb ¼ 1:0; b0 ¼ 0:72� i0:42

Mode Eq. (8a) Eq. (8b) Eversman Starting value

1þ 1:141þ i0:217 1:141þ i0:217 1:142þ i0:217 0:0þ i0:0
2þ 4:157� i0:782 4:157� i0:782 4:158� i0:781 pþ i0:0
3þ 4:313� i1:988 4:313� i1:988 4:306� i1:995 2pþ i0:0
4þ 7:857� i0:479 7:916� i0:619 7:857� i0:478 3pþ i0:0
5þ 11:046� i0:327 11:077� i0:406 11:046� i0:326 4pþ i0:0
1� 0:523þ i0:353 0:523þ i0:353 0:523þ i0:353 0:0þ i0:0
2� 2:389þ i0:312 2:389þ i0:312 2:388þ i0:312 pþ i0:0
3� 5:244� i0:081 5:244� i0:081 5:243� i0:081 2pþ i0:0
4� 8:214� i0:165 8:214� i0:165 8:214� i0:165 3pþ i0:0
5� 11:249� i0:170 11:249� i0:170 11:248� i0:170 4pþ i0:0
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4. Homotopy solution of the eigenvalue problem for a non-locally reacting liner

4.1. Eigenvalue equation for a single-layer non-locally reacting liner

Consider in the polar cylindrical coordinate system ðx; r; yÞ a duct with rigid walls lined with an isotropic
porous medium material. Also, we assume that the effect of the mean flow velocity in the porous medium is
negligible, provided the resistivity of the material is not small. With these assumptions [5], the acoustic field in
the porous medium is governed by

re

qup

qt
þrpp þ sup ¼ 0, (9)

O
r0

qrp

qt
þrup ¼ 0, (10)

pp ¼ c2erp, (11)

where c is the speed of sound, ce is the effective speed of sound in the porous material, r0 is density,
re ¼ sr0=O is the effective density of the gas in the porous material, O is the porosity of the reacting liner
material, s is the resistivity of porous material, and s is a structure factor which is mainly dependent on the
structural properties of the material and the internal friction of the gas. Obviously, propagation in the duct
with a non-locally reacting liner can be expressed as superposition of acoustic modes of the form

pn ¼ AnJmðarÞeiðot�kzn zÞ; ror1, (12a)

pn ¼ ½BnJmðbrÞ þ CnY mðbrÞ�eiðot�kzn zÞ; r1oror2, (12b)

where a is the eigenvalue of the non-locally reacting liner in the radial direction ðrpr1Þ, and b is the eigenvalue
in the radial direction ðr1prpr2Þ. By the application of the displacement continuity condition and momentum
equation, the relevant relations can be written as

qp

qr

�

�

�

�

r¼r2

¼ 0, (13a)
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Fig. 2. The integration paths formed by using the different homotopy equations, Ma ¼ 0:5; kb ¼ 1:0; b0 ¼ 0:72� i0:42.
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1�Ma
kz

k

� ��2
dp

dr

�

�

�

�

r¼r1�0

¼ z
dp

dr

�

�

�

�

r¼r1þ0

, (13b)

½p�r¼r1þ0
r¼r1�0

¼
Z

ior0

dp

dr

�

�

�

�

r¼r1þ0

. (13c)

And

k2
zð1�Ma2Þ þ 2Makkzða2 � k2

Þ ¼ 0, (14a)

k2
z þ b2 ¼ m2 ¼ k

c

ce

O
z

� �1=2
" #2

, (14b)

where

z ¼
r0

ðre � iðs=oÞÞ
; m ¼

o
ce

� �

O
z

� �1=2

, (15)

and Z is the specific acoustic impedance ratio. Substituting Eqs. (12) into Eqs. (13) yields

F ðaÞ ¼ 1�Ma
kz

k

� �2
Jmðar1Þ

aJ 0mðar1Þ
þ

Z

ior0
�

1

zb
�

Jmðbr1ÞY
0
mðbr2Þ � Y mðbr1ÞJ

0
mðbr2Þ

J 0mðbr1ÞY
0
mðbr2Þ � Y 0mðbr1ÞJ

0
mðbr2Þ

¼ 0. (16)

When there is no flow in the duct, Eq. (16) is the same as Rienstra’s equation [6]. However, up to now, it has
not been solved numerically. We solve this equation by the following method. First, according to the
eigenvalue equation derived as above, the relevant homotopy equation can be written as

Hðkr; tÞ ¼ ð1� tÞkrJ
0
mðkr0rÞ þ tF ðkrÞ ¼ 0, (17a)

Hðkr; tÞ ¼ ð1� tÞðkr � kr0Þ þ tF ðkrÞ ¼ 0. (17b)

Then Eqs. (17a) and (17b) can be transformed into two ODEs with the same initial values, which are finally
solved by the integration scheme. We have found that it is difficult to obtain reasonable results for a porous
material liner without perforated plates by simply using Eqs. (17a) and (17b). To overcome this difficulty, we
can assume that the parameter s, O and s are also a function of t, satisfy sð0Þ ¼ 1, Oð0Þ ¼ 1, sð0Þ ¼ 0 for t ¼ 0
and sð1Þ ¼ sf , Oð1Þ ¼ Of , sð1Þ ¼ sf for t ¼ 1. Physically, the starting value ðt ¼ 0Þ and the final value ðt ¼ 1Þ
correspond to no porous material in the liner and the real boundary condition with porous material,
respectively, whereas it is important to set up an appropriate expression of sðtÞ, OðtÞ and sðtÞ for different liner
configurations in order to obtain robust numerical results. In general, these parameters can be considered as
linear or exponential functions of the homotopy parameter. As the first example, we consider a single-layer,
non-locally reacting liner without a cover plate. In this case, Fig. 3 shows the comparison between the present
calculation and Nayfeh’s result [4], which was solved using the Newton–Raphson Scheme. Good agreement is
obtained in terms of the trends of the results. The difference in the magnitude may be attributed to the effect of
non-uniform flow considered in Nayfeh’s model. The second example considers the liner without porous
materials. The sound absorption mechanism originates from the vortex sound interactions [7,15]. With a bias
flow Mach number of 0.03, Fig. 4 gives the frequency dependence of the radial eigenvalues and relevant sound
attenuation with the frequency for the different modes.

4.2. Eigenvalue equation of double-layer non-locally reacting liners

The geometry of a double-layer acoustically non-locally lined circular duct with uniform flow is shown in
Fig. 5. a; b1, and b2 denote, respectively, the eigenvalues of the radial direction in the two layers. Therefore,
the sound propagation in the duct can be described as

pn ¼ AnJmðanrÞeiðot�kzn zÞ; ror1,
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pn ¼ ½B1nJmðb1nrÞ þ C1nY mðb1nrÞ�eiðot�kzn zÞ; r1oror2,

pn ¼ ½B2nJmðb2nrÞ þ C2nY mðb2nrÞ�eiðot�kzn zÞ; r2oror3. (18)

The boundary conditions of the double-layer non-locally reacting liner are

qp

qr

�

�

�

�

r¼r3

¼ 0, (19a)

qp

qr

�

�

�

�

r¼rþ
2

¼
qp

qr

�

�

�

�

r¼r�
2

, (19b)

qp

qr

�

�

�

�

r¼rþ
2

¼ ðp2þ � p2�ÞZ2jr¼r2 , (19c)
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qp

qr

�

�

�

�

r¼rþ
1

¼ 1�Ma
kz

k

� ��2qp

qr

�

�

�

�

r¼r�
1

, (19d)

qp

qr

�

�

�

�

r¼rþ
1

¼ ðp1þ � p1�ÞZ1jr¼r1 . (19e)

By imposing the corresponding boundary conditions, we can arrive at the following eigenvalue equation for
the double-layer non-locally reacting liners

F ðaÞ ¼
1

Z1
þ 1�Ma

kz

k

� �2
Jmðar1Þ

aJ 0mðar1Þ
�

1

b
B1Jmðbr1Þ þ C1Y mðbr1Þ

B1J 0mðbr1Þ þ C1Y 0mðbr1Þ
, (20)

where

B1

C1
¼ �

Z2Y
0
mðbr3Þf 1 þ bY 0mðbr2Þf 2

Z2J 0mðbr3Þf 1 þ bJ 0mðbr2Þf 2

, (21)

f 1 ¼ Jmðbr2ÞY
0
mðbr2Þ � J 0mðbr2ÞY mðbr2Þ, (22a)

f 2 ¼ J 0mðbr2ÞY
0
mðbr2Þ � J 0mðbr2ÞY

0
mðbr2Þ, (22b)

and Z is effective compliance [7]. Therefore, the homotopy equation can be expressed as

Hða; tÞ ¼ ð1� tÞJ 0mðar1Þ þ tF ðaÞ ¼ 0. (23)

The same procedure as that used for a single-layer non-locally reacting liner can be applied to solve the above
homotopy equation. In order to verify the computational results from Eq. (20), we have made a comparison
with recent experimental data [10]. In this experiment, r1 ¼ 12:7 cm; r2 ¼ 15:2 cm; f1 ¼ 0:04; f2 ¼ 0:02; L ¼

17:8 cm; a1 ¼ 3:3mm; a2 ¼ 2:7mm and r3br1. In fact, with the increase of r3, the computation indicates that
the absorption changes little. Fig. 6 shows that our model for the double non-locally reacting liners can give
good agreement with the existing experimental results.

4.3. Controllability of non-locally reacting liner by the bias flow

As we know, if the eigenvalue of the softwall has been calculated, the mode-matching method [14] can be
used robustly to predict the attenuation of multi-segmented liners. To investigate the possibility of controlling
the sound attenuation of non-locally reacting liner through the bias flow, we consider a three-segmented liner,
as shown in Fig. 7. The parameters f and a represent the open area ratio and radius of the liner, respectively.
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For circumferential mode m ¼ 2, Fig. 8(a) gives the results for sound attenuation with a uniform bias flow for
each segment of the liner. We can see that the variation of the reduced frequency kL will correspond to
different sound attenuation. Furthermore, if a different combination of the bias flow for each section is used,
as shown in Fig. 8(b), we can achieve better sound attenuation, by making use of the sound wave cancelation
between the interfaces with different impedance walls. In future work, we may further explore the potential of
multi-segmented liners, building on the present and previous work [10,16,17].

5. Conclusions

This paper presents a unified algorithm to study the eigenvalue problem for a lined duct using the homotopy
method. The analysis has been carefully benchmarked and validated against the existing work. The homotopy
method developed in present study can provides an accurate and reliable means for sound-propagation
computation. The approach not only overcomes the computational difficulties of the existing methods for
locally reacting liners, but also provide a completely different way to calculate the eigenvalues of non-locally
reacting liners. The latter is of great interest due to its potential application for future advanced liners. Finally,
a model multi-segmented, non-locally reacting liners is treated to explore the possibility of controlling sound
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attenuation through a bias flow. Simulation results indicated that optimal sound attenuation can be achieved
by adjusting the bias flow of each segment.
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Fig. 8. Effect of the variations of frequency and bias flow on the attenuation.
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